

PH IN CTD

DR P D RATH

MD, FACR, FNIMS, GCPR(AUS)

DIPLOMA IN MSK USG -UCAM (SPAIN)

DIRECTOR AND HEAD OF DEPTT. RHEUMATOLOGY

MAX SUPER SPECIALITY HOSPITAL SAKET, MAX SMART HOSPITAL MAX MED CENTRE PANCHSHEEL PARK

NEW DELHI

Pulmonary Hypertension

 Pulmonary hypertension (PH) is defined as a resting mean pulmonary artery pressure (mPAP) of ≥25 mmHg measured during right heart catheterization (RHC)

Although the prognosis of PAH has improved with targeted therapies, the outcome is dependent on early detection and an accurate diagnosis

European Heart Journal Supplements (2019) **21** (Supplement K), K4-K8 *The Heart of the Matter* doi:10.1093/eurheartj/suz211

The revised definition of pulmonary hypertension: exploring the impact on patient management

Gérald Simonneau¹* and Marius M. Hoeper²

¹Hôpital Universitaire de Bicêtre, Université Paris-Sud, 94275 Le Kremlin-Bicêtre, Paris, France; and ²Department of Respiratory Medicine, Hannover Medical School and German Center for Lung Research, 30625 Hannover, Germany

Table 1 Haemodynamic definitions of PH				
	Clinical groups ^a	Definition at rest		
		Previous ^{2,3}	Revised ¹	
Pre-capillary PH	1, 3, 4 and 5	mPAP ≥25 mmHg	mPAP >20 mmHg	
		$PAWP \leq 15 mmHg^b$	$PAWP \leq 15mmHg$	
			$PVR \ge 3 WU$	
Isolated post-capillary PH (IpcPH)	2 and 5	mPAP \geq 25 mmHg	mPAP >20 mmHg	
		PAWP >15 mmHg	PAWP >15 mmHg	
		DPG $<$ 7 mmHg and/or PVR \leq 3 WU	PVR <3 WU	
Combined post-capillary and pre-capillary	2 and 5	mPAP ≥25 mmHg	mPAP >20 mmHg	
PH (CpcPH)		PAWP >15 mmHg	PAWP >15 mmHg	
		DPG \geq 7 mmHg and/or PVR $>$ 3 WU	PVR ≥3 WU	

VENICE 2003 CLASSIFICATION

1. Pulmonary arterial hypertension

- Idiopathic PAH
- Heritable

BMPR2

ALK1, endoglin

unknown

- Drugs and toxins induced
- Associated with:
- Connective tissue diseases
- HIV infection
- Portal hypertension
- systemic to pulmonary shunts
- Schistosomiasis
- Chronic haemolytic anaemia

1'Pulm. veno- occlusive disease (PVO) and/or pulmonary capillary haemangiomatosis (PCH)

2. Pulmonary hypertension due to left heart disease

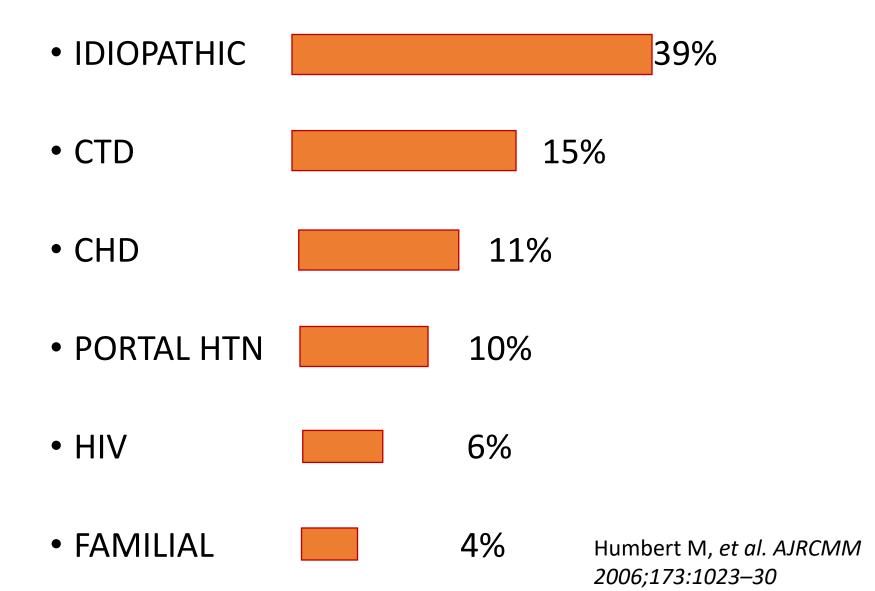
- Systolic dysfunction
- Diastolic dysfunction
- Valvular disease

3. Pulmonary hypertension due to lung diseases and/or hypoxia

- Chronic obstructive pulmonary disease
- Interstitial lung disease
- Sleep-disordered breathing
- Chronic exposure to high altitude
- Broncho pulmonary dysplasia (BPD)
- Developmental abnormalities

4. Chronic thromboembolic pulmonary hypertension (CTEPH)

5. Pulmonary Hypertension with unclear and/or mulifactorial mechanisms

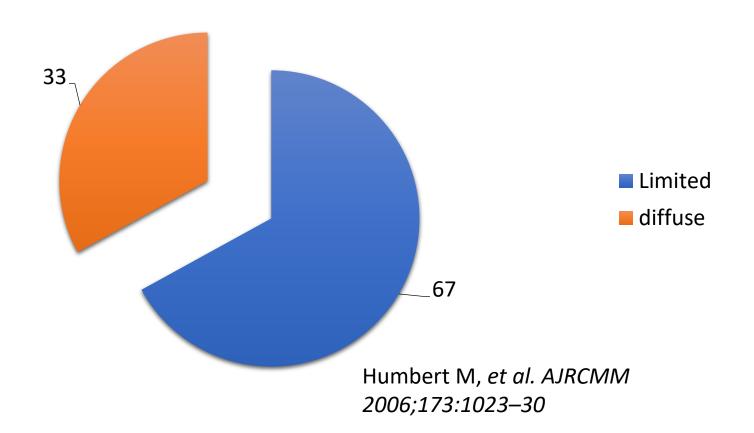

Haematologic disorders
 myeloproliferative disorders; splenectomy

Systemic disorders

Vasculitis sarcoidosis, pulmonary Langerhans cell histiocytosis LAM, neurofibromatosis.

- Metabolic disorders
 Glycogen storage disease, Gaucher disease, thyrold disorders
- Congenital heart disease
 other than systemic to pulmonary shunt
- Others: obstruction by tumours, fibrosingmediastinitis,

CTD LEADING CAUSE OF PAH



• SSc is the leading cause of death from PAH amongst the CTD.

• SLE-15%

• SSc- 76%

PAH in SSC

PAH in SSc worse than SLE

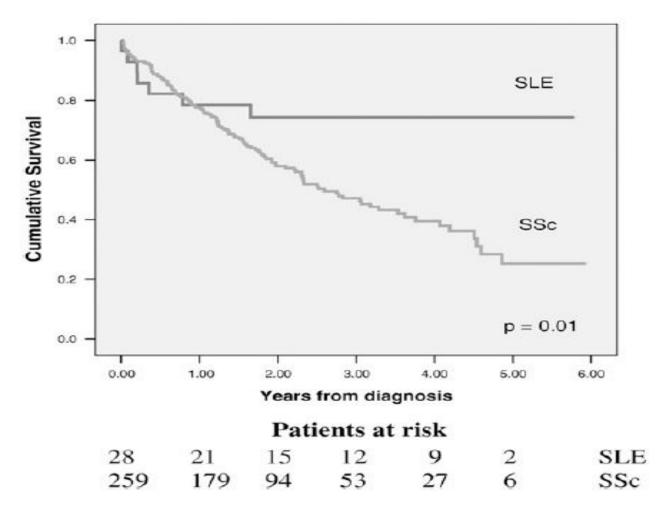


Figure 5. Survival from diagnosis of patients with isolated systemic sclerosis—associated pulmonary arterial hypertension and systemic lupus erythematosus—pulmonary arterial hypertension.

PH in SSC causes

Table 2. Estimated incidence of pulmonary hypertension during the 3-year followup period*

	Estimated incidence (no. of cases per 100 patient-years)	95% CI
All forms of pulmonary	1.37	0.74-2.00
hypertension	0.61	0.26 1.20
Pulmonary arterial hypertension	0.61	0.26 - 1.20
Among patients with lcSSc	0.40	0.11 - 1.03
Among patients with dcSSc	1.25	0.34 - 3.20
Postcapillary pulmonary hypertension	0.61	0.26-1.20
Pulmonary hypertension secondary to pulmonary fibrosis	0.15	0.02-0.55

^{* 95%} CI = 95% confidence interval; lcSSc = limited cutaneous systemic sclerosis; dcSSc = diffuse cutaneous systemic sclerosis.

Venice 2003 classification of PH

1. Pulmonary arterial hypertension

- Idiopathic PAH
- Heritable

BMPR2

ALK1, endoglin

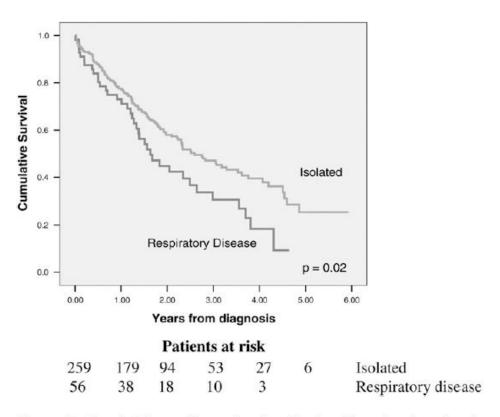
unknown

- Drugs and toxins induced
- Associated with:
- Connective tissue diseases
- HIV infection
- Portal hypertension
- systemic to pulmonary shunts
- Schistosomiasis
- Chronic haemolytic anaemia

1'Pulm. veno- occlusive disease (PVO) and/or pulmonary capillary haemangiomatosis (PCH)

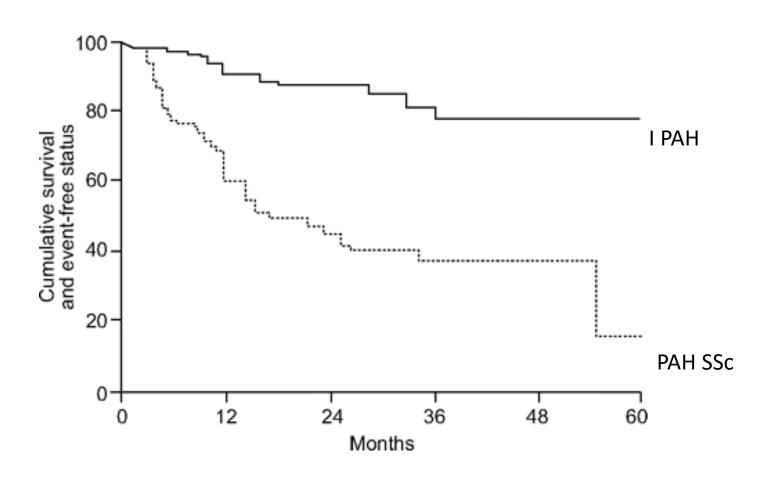
- 2. Pulmonary hypertension due to left heart disease
- Systolic dysfunction
- Diastolic dysfunction
- Valvular disease

- 3. Pulmonary hypertension due to lung diseases and/or hypoxia
- Chronic obstructive pulmonary disease
- Interstitial lung disease
- Sleep-disordered breathing
- Chronic exposure to high altitude
- Broncho pulmonary dysplasia (BPD)
- Developmental abnormalities
- 4. Chronic thromboembolic pulmonary hypertension (CTEPH)
- 5. Pulmonary Hypertension with unclear and/or mulifactorial mechanisms
- Haematologic disorders
 myeloproliferative disorders; splenectomy
- Systemic disorders


Vasculitis sarcoidosis, pulmonary Langerhans cell histiocytosis LAM, neurofibromatosis.

Metabolic disorders

Glycogen storage disease, Gaucher disease, thyroid disorders


- Congenital heart disease other than systemic to pulmonary shunt
- Others: obstruction by tumours, fibrosingmediastinitis, chronic renal failure on dialysis

PH-ILD worse than isolated PH

Figure 2. Survival from diagnosis of patients with systemic sclerosis and isolated or respiratory disease–associated pulmonary hypertension.

I PAH vs PAH SSc

Kawut et al. chest 2003

PHAROS STUDY

- 2 YR OUTCOME FOR PRE-PAH IN SSc
- ENTRY CRITERIA- DLCO <55%
- ECHO PASP- >40MMHG
- 205 PATIENTS ENROLLED SCREENED ANNUALY
- AFRICAN AMERICAN, AND NUCLEOLAR U3 RNP AB, DLCO
- CONCLUSION- AT 2YRS 22% CUMULATIVE DEV OF PAH IN PATIENTS AT HIGH RISK
- VERY LOW DLCO(40%) WAS THE BEST PREDICTOR
- ECHO PASP VARIABLE OVER TIME DID NOT CORRELATE WITH SPAP ON RHC.

OTHER risk factors for PAH in SSC

• Nt pro-BNP

• Telengectasias >10

Nail fold Capillaroscopy

NORMAL

ACTIVE SSc

EARLY SSc

LATE SSc

Not associated with risk of developing PAH

Digital ulcers

Digital gangrene

• Renal crisis

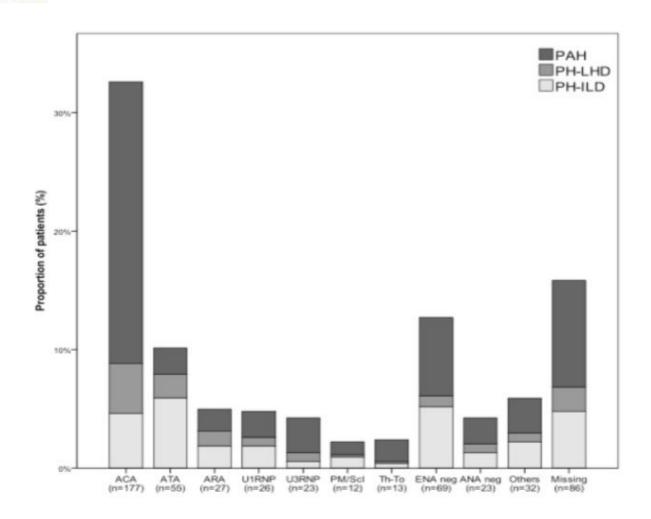
S.12.5 CLINICAL SUBTYPE AND AUTOANTIBODIES BOTH HELP PREDICT PULMONARY ARTERIAL HYPERTENSION, BUT AUTOANTIBODIES ARE STRONGER PREDICTORS OF DEVELOPING SECONDARY PULMONARY HYPERTENSION

M. Mohile, M. Lucas, T. Medsger, R. Domsic

University of Pittsburgh, Pittsburgh, USA

Table 1: Multivariable Predictors of PAH

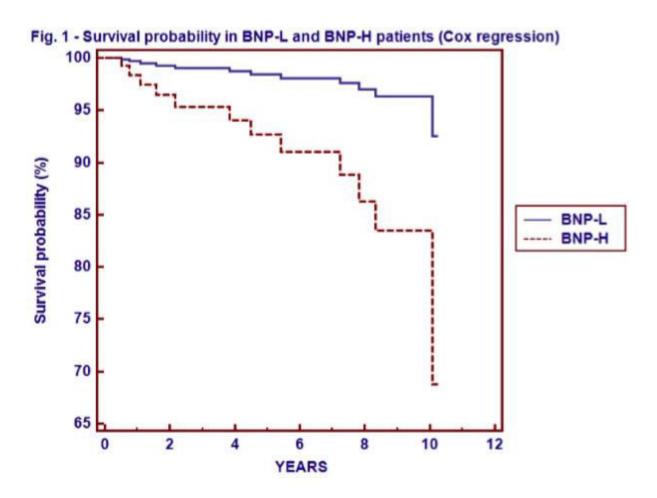
	Odds Ratio (95% Confidence Interval)	p-value
Age (years) at initial visit < 35 35-44 45-54 55-64 >65	0.88 (0.37 - 2.10) 1.07 (0.48 - 2.42) 2.11 (0.94 - 4.73) 3.64 (1.64 - 8.07)	< 0.0001
Limited cutaneous involvement	2.74 (1.67 - 4.48)	< 0.0001
Th/To or U3RNP positive (nucleolar ANA)	2.66 (1.61 - 4.41)	< 0.0001


Table 2: Multivariable Predictors of Secondary PH

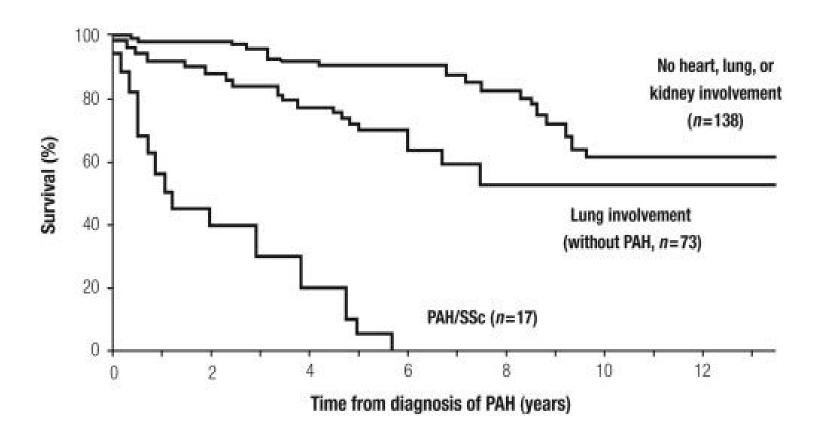
	Odds Ratio (95% Confidence Interval)	p-value
Age (years) at initial visit < 35 35-44 45-54 55-64 >65	1.23 (0.43 – 3.59) 1.95 (0.72 – 5.29) 2.70 (0.98 – 7.43) 3.53 (1.25 – 9.97)	0.03
Male	2.18 (1.32 - 3.59)	< 0.002
Anti-U11/U12 RNP positive	1.51 (0.93 – 2.45)	0.02
ACA	0.27 (0.11 - 0.67)	0.004
Limited cutaneous involvement	3.12 (1.17 - 8.34)	0.09

PS21 AUTOANTIBODY PROFILE IN SYSTEMIC SCLEROSIS ASSOCIATED PULMONARY HYPERTENSION

V. Sobanski 1, S. Nihtyanova 1, B. Lynch 1, B. Schreiber 2, J. Harvey 3, C. Handler 2, C. Denton 1, G. Coghlan 2


¹ Centre For Rheumatology and Connective Tissue Diseases - Royal Free Hospital - University College London, London, UNITED KINGDOM, National Pulmonary Hypertension Unit - Royal Free Hospital - University College London, London, UNITED KINGDOM, Department of Clinical Immunology - Royal Free Hospital - University College London, London, UNITED KINGDOM

S.12.6 PROGNOSTIC VALUE OF NT-PROBNP IN SYSTEMIC SCLEROSIS PATIENTS WITHOUT PULMONARY HYPERTENSION


M. Antivalle, M. Battellino, M.C. Ditto, M. Chevallard, A. Mutti, A. Batticciotto, V. Varisco, F. Rigamonti, F. Atzeni, P. Sarzi-Puttini

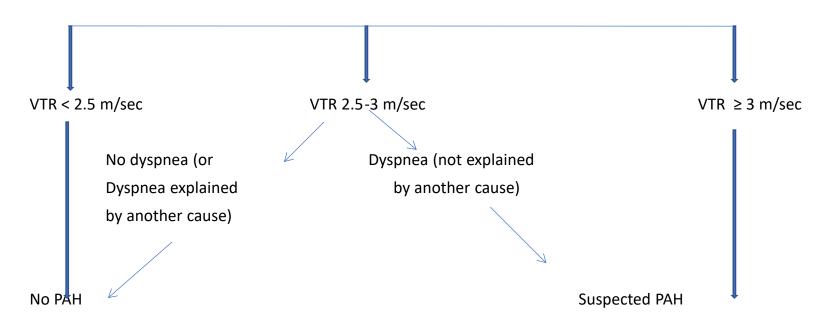
Rheumatology - L.Sacco University Hospital, Milano, ITALY

SCREENING FOR PAH

Why screening

ECS

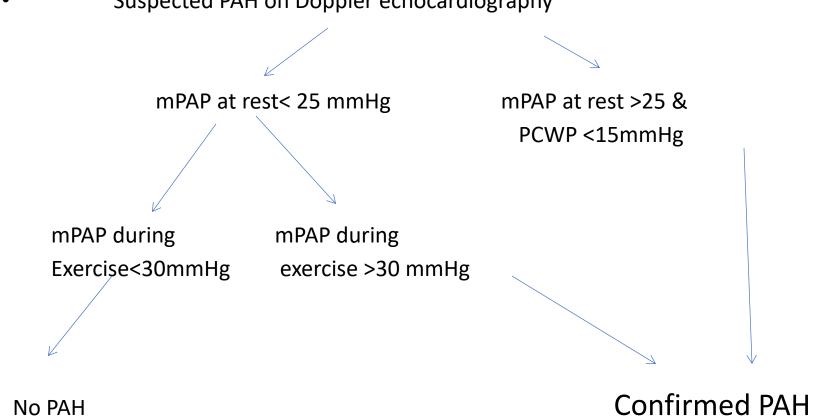
Positive screen on echocardiography (referral to RHC recommended)


- TRV > 3.4 m/s
- or TRV >2.8-≤3.4 m/s and symptoms (current dyspnoea, current syncope/near syncope, presence of peripheral oedema)
- or TRV ≤2.8 m/s and symptoms and additional suggestive echo variable (e.g. RA area >18 cm²)

Itine'rAIR-Scle'rodermie study

- 559 pts without severe Pulmonary function abnormalities underwent Doppler echocardiography.
- Patients with a peak velocity of tricuspid regurgitation (VTR) of >3 m/s or 2.5–3 m/s accompanied by unexplained dyspnoea then underwent right heart catheterization (RHC) to confirm PAH according to international guidelines
- Based on Doppler echocardiography 33 of the 559 patients had suspected PAH.

Doppler echocardiography


SSc patients with no severe pulmonary function abnormalities

VTR : Peak velocity of pulmonary regurgitation

Right heart catheterization

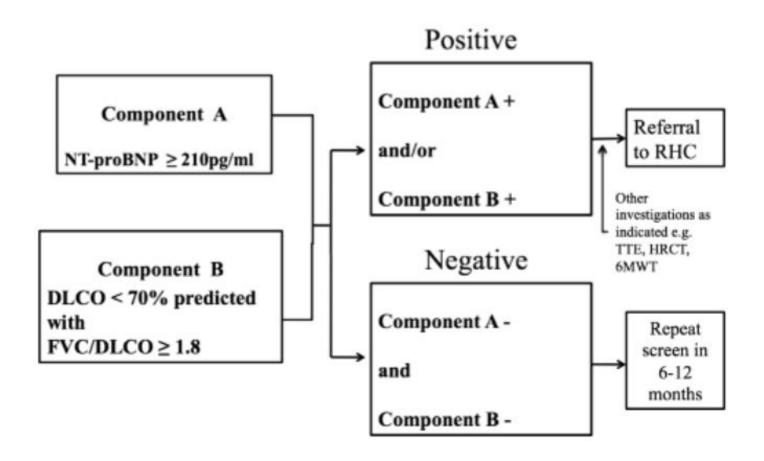
Suspected PAH on Doppler echocardiography

RHC

PAH: 18

- 14 had a mPAP ≥ 25 mmHg at rest
- ≥ 25-35 mmHg : 9
- ≥ 35-45 mmHg : 4
- ≥ 45 mmHg : 1
- 4 had a mPAP < 25 mmHg at rest but ≥ 30 mmHg at exercise

No PAH: 12/33


- 5 had no exercise RHC
- 6 had a mPAP > 20 mmHg

Post capillary PH: 3/33


Key take home points

- Echo cardiography is a good screening tool.
- Echo cardiography tends to overestimate PAH as compared to RHC.
- Left heart disease is a major differential diagnosis and may be missed a on Echo.

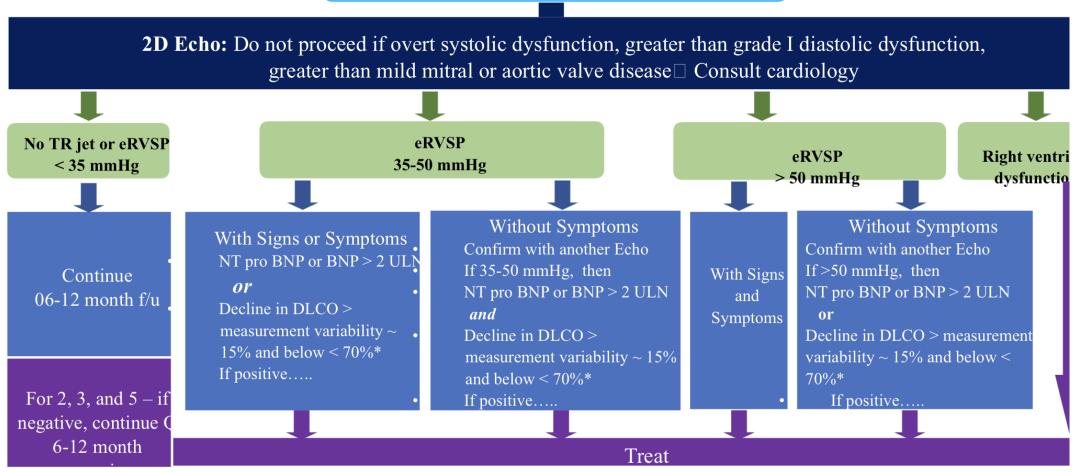
ASIG

DETECT

S.12.4 A COMPARISON OF THE PREDICTIVE ACCURACY OF THREE SCREENING MODELS (DETECT V. ESC/ERS V. ASIG) FOR PULMONARY ARTERIAL HYPERTENSION IN SYSTEMIC SCLEROSIS

Y.J. Hao ^{1,2}, V. Thakkar ^{1,2}, W. Stevens ¹, D. Prior ², C. Rabusa ^{1,2}, P. Youssef ³, E. Gabbay ⁴, J. Roddy ⁴, J.G. Walker ⁵, J. Zochling ⁶, J. Sahhar ⁷, P. Nash ⁸, S. Lester ⁹, C. Hill ⁹, M. Rischmueller ⁹, S.M. Proudman ¹⁰, M. Nikpour ^{1,2}

Table 1. Comparison of the performance of DETECT v. ESC/ERS v. ASIG screening models for SSc-PAH


	DETECT ESC/ERS n=61 n=58		PAH prevalence set at 10%			
			ASIG n=61	DETECT n=61	ESC/ERS n=58	ASIG n=61
Sensitivity	100%	96.3%	100%	100%	96.3%	100%
(95% CI)	(87.2-100)	(81-99.9)	(87.2-100)	(54.1-100)	(54.1-100)	(54.1-100)
Specificity	35.3%	29.0%	47.1%	35.3%	29.0%	47.1%
(95% CI)	(19.7-53.5)	(19.7-53.5)	(29.8-64.9)	(23.8-50.4)	(12.5-36.8)	(35.4-62.9)
PPV	55.1%	54.2%	60%	14.7%	13.1%	17.4%
(95% CI)	(40.2-69.3)	(39.2-68.6)	(44.3-74.3)	(5.6-29.2)	(4.9-26.3)	(6.8-34.5)
NPV	100%	90.0%	100%	100%	99.7%	100%
(95% CI)	(63.1-100)	(55.5-99.7)	(79.4-100)	(83.2-100)	(73.5-100)	(87.2-100)

Department of Rheumatology, St Vincent's Hospital Melbourne, Melbourne, AUSTRALIA,² The University of Melbourne Department of Medicine at St Vincent's Hospital Melbourne, Melbourne, AUSTRALIA,³ Institute of Rheumatology and Orthopaedics, Royal Prince Alfred Hospital, Sydney, AUSTRALIA,⁴ Pulmonary Hypertension Service and Department of Rheumatology, Royal Perth Hospital, Perth, AUSTRALIA,⁵ Department of Rheumatology, Flinders Medical Centre, Adelaide, AUSTRALIA,⁶ The Menzies Research Institute Tasmania, Tasmania, AUSTRALIA,⁷ Department of Rheumatology, Monash Medical Centre, Melbourne, AUSTRALIA,⁸ Sunshine Coast Rheumatology, Sunshine Coast, AUSTRALIA,⁹ Rheumatology Department, The Queen Elizabeth Hospital, Adelaide, AUSTRALIA,¹⁰ Department of Rheumatology, Royal Adelaide Hospital, Adelaide, AUSTRALIA

BUT..... IS IT PRACTICALLY POSSIBLE TO DO RHC IN OUR COUNTRY TO DIAGNOSE PAH?

Recommendations— Treatment based on non-invasive tests

SSc and scleroderma-spectrum disorders

Symptoms: dyspnea on rest or exercise, fatigue, pre-syncope/ syncope, chest pain, palpitations, dizziness, lightheadedness.

Signs: Loud pulmonic sound, peripheral edema-- *without progression in ILD (if present), ** right ventricular enlargement or failure or evidence of flattening of intraventricular

TREATMENT FOR PAH

?Role of immunosuppresive therapy in CTD PAH

Immunosuppressive Therapy in Connective Tissue Diseases-Associated Pulmonary Arterial Hypertension

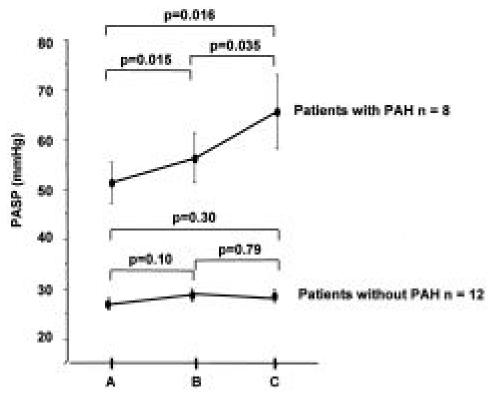
- Eight of 28 patients [29%] were responders
- [SLE], n = 5
- [MCTD] n = 3
- No patients with systemic sclerosis responded,

Rheumatology Advance Access published April 29, 2015

RHEUMATOLOGY

54

Original article


doi:10.1093/rheumatology/kev097

Pulmonary arterial hypertension in systemic lupus erythematosus may benefit by addition of immunosuppression to vasodilator therapy: an observational study

Sirisha Kommireddy¹, Srinivas Bhyravavajhala², Kishorebabu Kurimeti¹, Srinivasa Chennareddy¹, Suresh Kanchinadham¹, Irlapati Rajendra Vara Prasad¹ and Liza Rajasekhar¹

?Role of immunosuppresive therapy in SSc PAH

CYC IN SSc-PAH

Effect of intravenous pulse cyclophosphamide (CYC) treatment on pulmonary artery systolic pressure (PASP) in 20 patients with ILD. A = before CYC treatment; B = at the end of CYC treatment; $C = \ge 6$ months after completion of CYC treatment. Values are the mean \pm SD.

Mycophenolate Mofetil (MMF) Use in Scleroderma Patients with Pulmonary Hypertension: Observations from the Pulmonary Hypertension Assessment and Recognition of Outcomes in Scleroderma Cohort

Lesley Ann Saketkoo¹, Matthew R. Lammi², Aryeh Fischer³, Jerry A. Molitor⁴ and Virginia D. Steen⁵, ¹Scleroderma and Sarcoidosis Patient Care and Research Center, Rheumatology and Pulmonary Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, ²Louisiana State University Health Sciences Center, Pulmonary and Critical Medicine, New Orleans, LA, ³Rheumatology / ILD Program, National Jewish Health, Denver, CO, ⁴Rheumatology, University of Minnesota, Minneapolis, MN, ⁵Department of Rheumatology, Georgetown University Medical Center, Washington, DC

Meeting: 2014 ACR/ARHP Annual Meeting

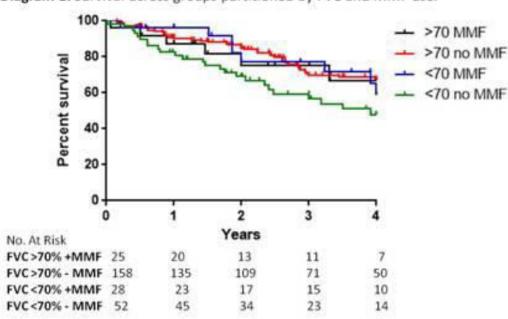


Diagram 1. Survival across groups partitioned by FVC and MMF use.

The trend for improved survival in patients with PH with FVC < 70 who were treated with MMF even in the absence of improvement of FVC is intriguing. Whether it has an effect on pulmonary artery remodeling should be considered. These findings warrant prospective controlled investigations of MMF in SSc PH particularly in those with restrictive lung disease.

Does Mycophenolate Mofetil (mmf) Have An Effect On Pulmonary Hemodynamics? Observations From The Pulmonary Hypertension Assessment And Recognition Of Outcomes In Scleroderma (pharos) Cohort

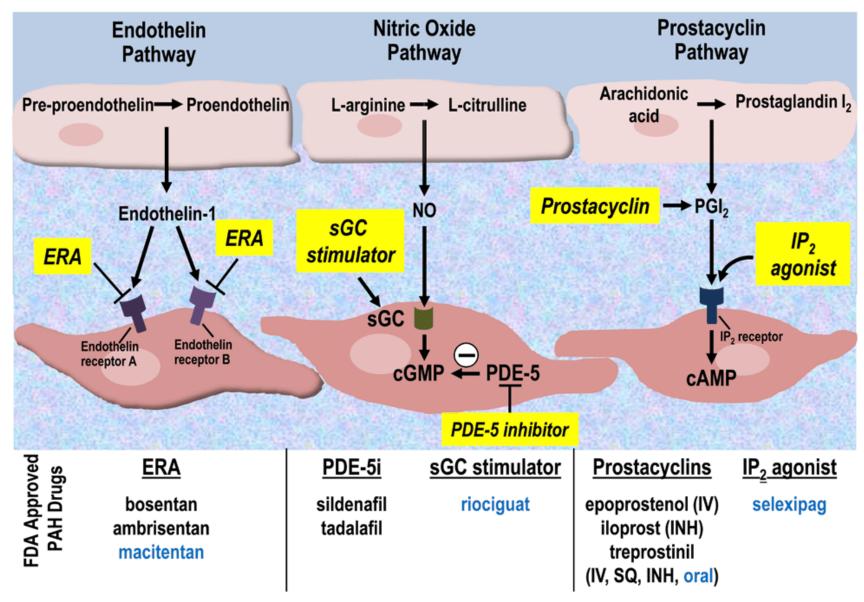
L. Saketkoo¹, ², M. R. Lammi¹, J. Gordon³, P. Lauto¹, V. Steen⁴, PHAROS Investigators

Table 1. Comparison between SSc patients on No IS medications and MMF at time of first RHC.

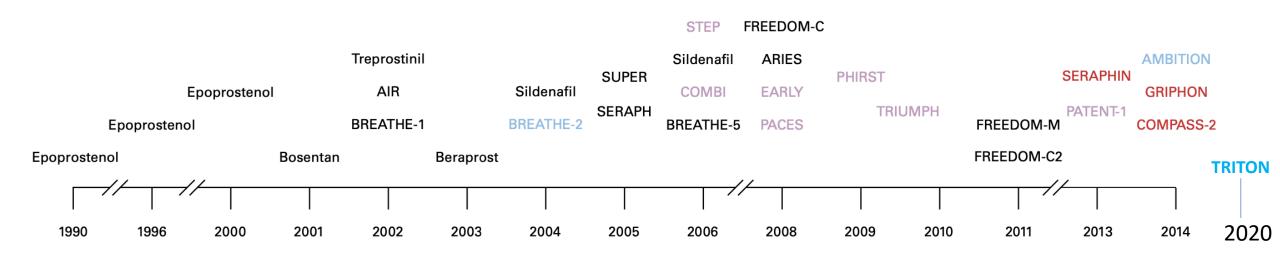
Continuous variables are reported as median, interquartile range; categorical values are proportional.

	No IS	MMF	p Value
n	203	39	
Age	60 (52,68)	54 (47,63)	*0.0143
Sex (% female)	84%	65%	0.6491
N (%) Limited SSc	144 (71%)	14 (35%)	*< 0.0001
Time from 1st SSc Symptom (years)	11.2 (5.3,21.0)	6.9 (3.0,10.3)	*0.0004
mPAP	33 (28,44)	29 (25,35)	*0.0016
PVR	355 (242,692)	222 (162,344)	*0.0006
PCWP	11 (8,14)	11 (9,15)	0.7036
FVC TLC	78.1 (64,88) 76.5 (66,93)	68.9 (48,84) 62.8 (47,80)	*0.0298 *0.0002
FEV/FVC	81 (75,87)	87 (81,93)	*0.0048
DLCO	37.5 (30,50)	34.3 (28,39)	0.0929
FVC:DLCO	1.94 (1.6,2.4)	1.85 (1.4,2.5)	0.6908
6MWD	338.3 (238,428)	396.2 (343,475)	*0.0298

Am J Respir Crit Care Med 189;2014:A4744


¹Louisiana State University Health Sciences Center, New Orleans, LA, ², ³Hospital for Special Surgery, New York, NY, ⁴Georgetown University Medical Center, Washington, DC

POOR LONG TERM RESPONSE TO CCB'S IN CTD PAH


	NO. OF TESTED PATIENTS*	ACUTE RESPONDERS#	LONG TERM RESPONDERS
IDOPATHIC PAH	523	13.5%	7.5%
APPETITE SUPRESS.	127	11.8%	7.9%
CTD-PAH	168	10.1%	1.2%
PVOD	34	12.2%	0
HIV ASSOC. PAH	124	1.6%	1.6%
CHD PAH	50	0	NA
FAMILIAL PAH	34	0	NA
POTROPULM. PAH	153	1.3%	0.7%

^{*} With NO and/or PgI2; # fall in mPAP and PVR > 20%

THREE MAIN PATHWAYS IN PATHOPHYSIOLOGY OF PAH

TIMELINE OF TREATMENT OF PAH

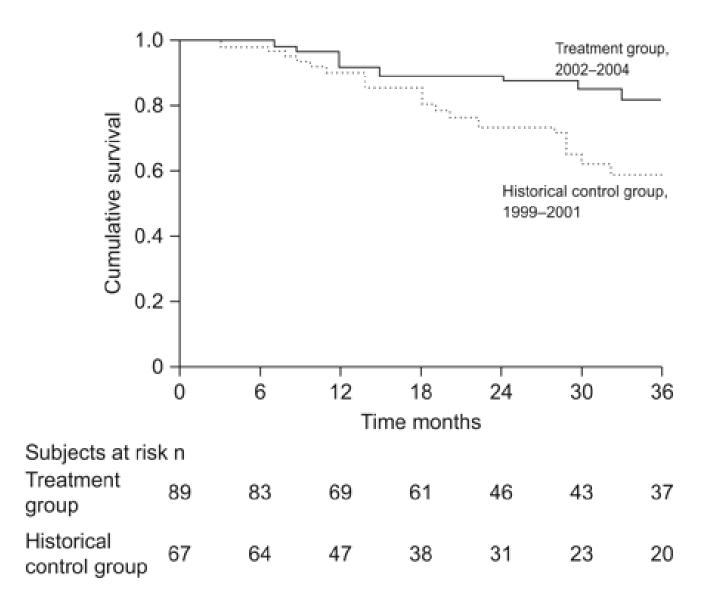
Monotherapy

Monotherapy and/or sequential combination

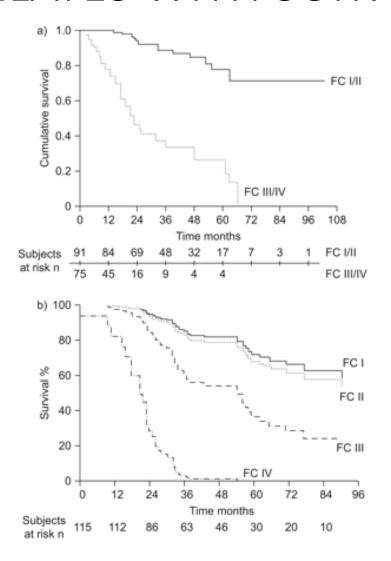
Morbidity/Mortality

Upfront combination

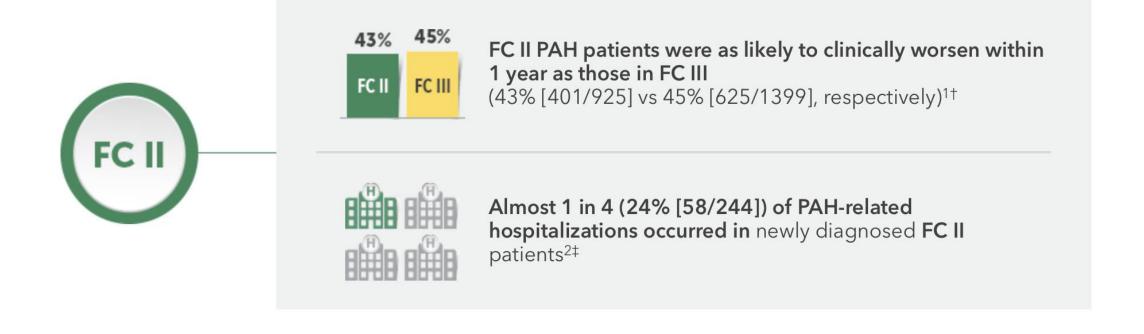
TREAT TO TARGET

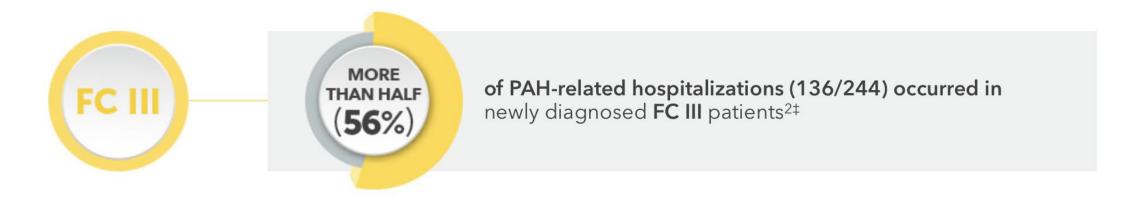

 Close monitoring of patients for early identification of inadequate response, so that treatment can be escalated promptly and before the patient's condition deteriorates further.

 Goal-oriented therapy determines the timing of treatment escalation by inadequate Response to known prognostic indicators An algorithm for goal-oriented therapy in pulmonary arterial


hypertension (PA Diagnosis of PAH Vasoreactivity test negative Baseline examination and 3 to 6 month re-evaluation to assess treatment goals (Clinically stable, WHO functional class II, 6MWD >400 m, Pra/CI normal) Treatment goals not met Treatment goals met Start ERA or PDE-5 inhibitors Continue treatment Continue treatment Add PDE-5 inhibitors or ERA Parenteral prostanoids and/or Continue treatment enrolment in clinical trial Urgent lung transplantation

WHO: World Health Organization; 6MWD: 6-min walk distance; P_{ra} : right atrial pressure; CI: cardiac index; ERA: endothelin receptor antagonist; PDE: phosphodiesterase

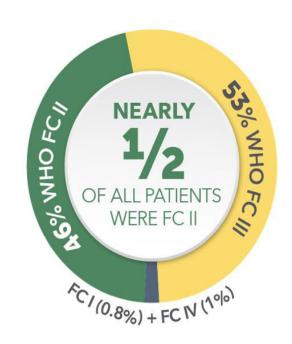

Hoeper MM, et al. *Eur Respir J* 2005; 26:858-63.

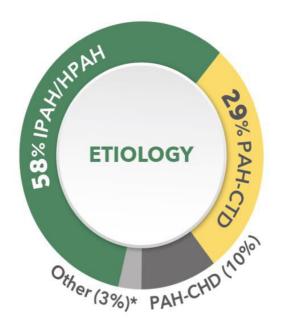


6MWD & NYHA- FC STRONGLY CORRELATES WITH SURVIVAL

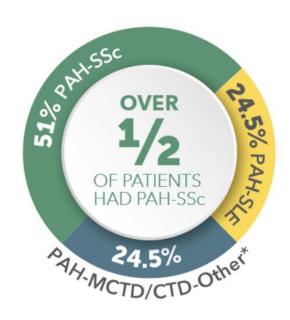
FINDINGS FROM THE REVEAL REGISTRY*

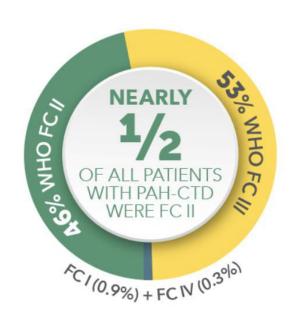
FINDINGS FROM THE DETECT STUDYS


GRIPHON—The Largest PAH-CTD Subpopulation in a Randomized Controlled PAH Trial (n=334)


Baseline patient characteristics

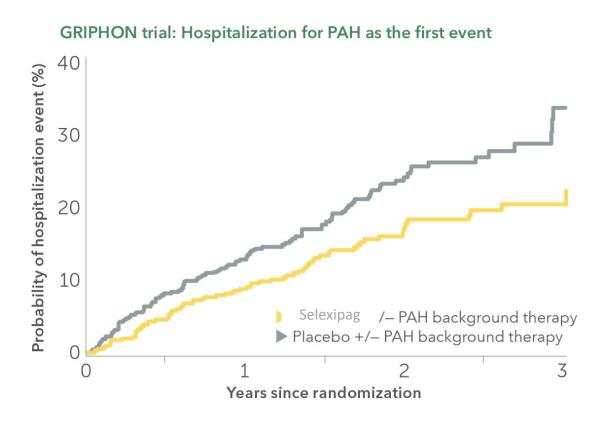
Mean age: 48 years


Female: 80%




PAH-CTD was a prespecified subgroup of the GRIPHON phase 3 trial (Selexipag: n=167, placebo: n=167)

Prevents Disease Progression



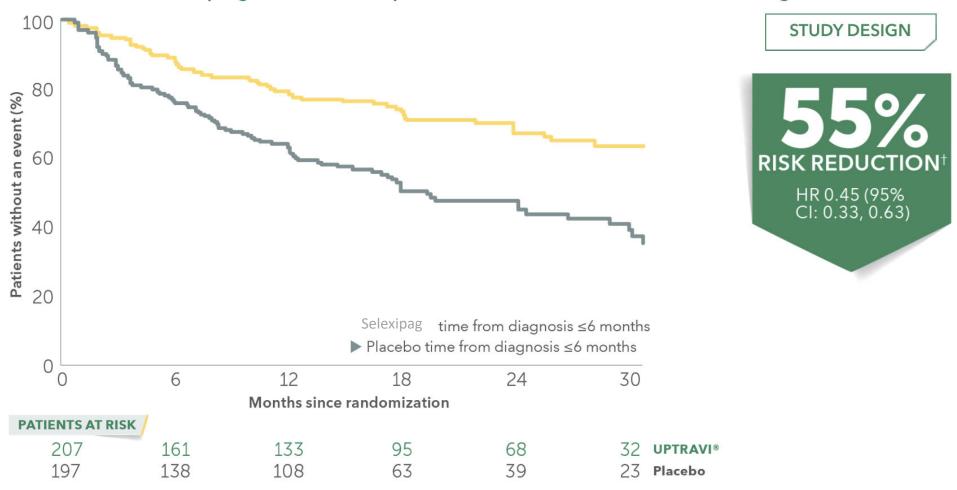
Excellent Efficacy

Summary of primary endpoint events

n=574 % (n)	Placebo n=582 % (n)
27.0% (155)	41.6% (242)
13.6% (78)	18.7% (109)
6.6% (38)	17.2% (100)
4.9% (28)	3.1% (18)
1.7% (10)	2.2% (13)
0.2% (1)	0.3% (2)
	n=574 % (n) 27.0% (155) 13.6% (78) 6.6% (38) 4.9% (28) 1.7% (10)

Reduces Hospitalizations

STUDY DESIGN


Hospitalization as first event up to end of treatment:

Placebo
18.7%
(n=109)

Initiation before 6 months

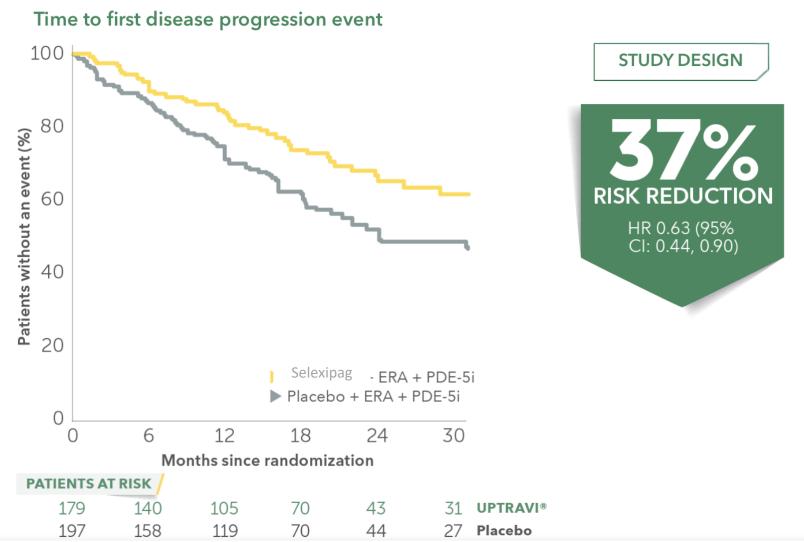
Time to first disease progression event in patients treated within 6 months of PAH diagnosis

Initiation after 6 months

Time to first disease progression event in patients treated after 6 months of PAH diagnosis

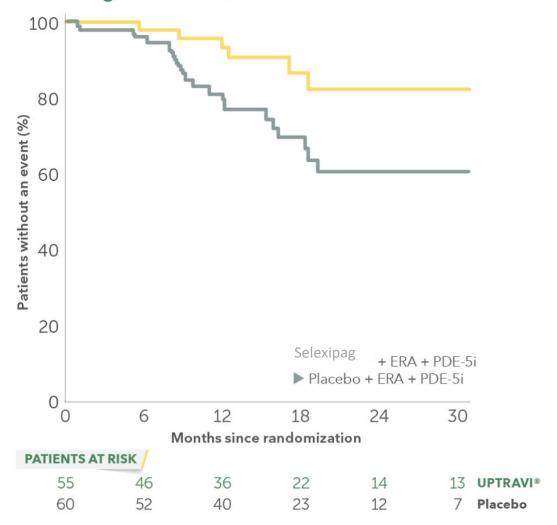
Triple combination subgroup

Baseline patient characteristics


- > 33% (n=376) of all patients in GRIPHON were receiving an ERA and a PDE-5i at baseline (31% FC II and 68% FC III)*
- Etiology in triple-combination subgroup: IPAH/HPAH (64%), PAH-CTD (26%), PAH-CHD (5%), other (5%)

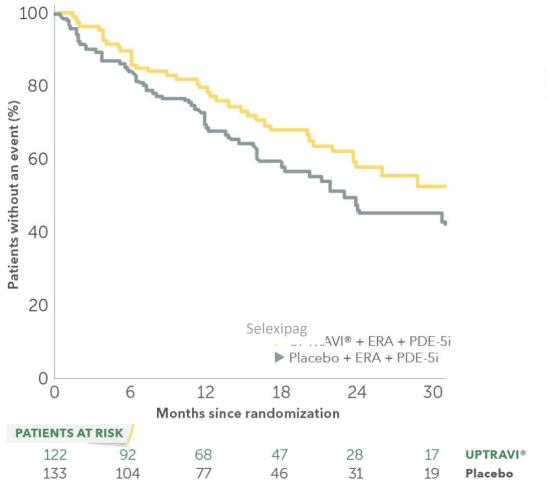
Notable differences from overall population

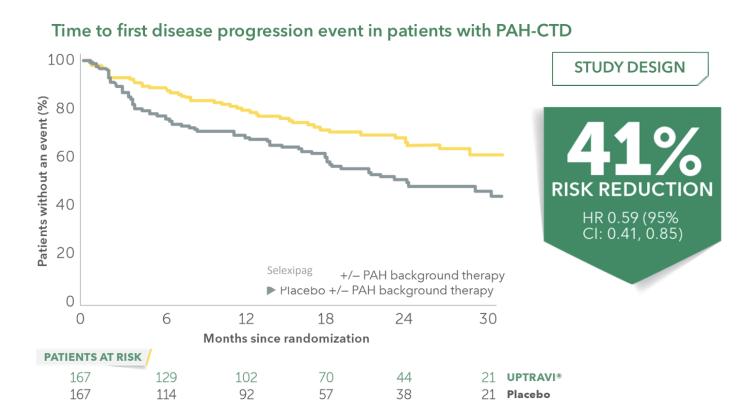
The triple-combination subgroup had:


- Longer time from diagnosis (3.8 years vs 2.4 years in the overall population)
- Larger percentage from Western Europe/Australia (53% vs 28%)
- Larger percentage from North America (29% vs 17%)

Prevents Disease Progression

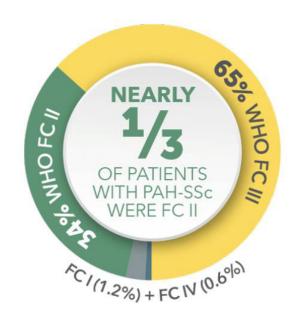
FC II SUBGROUP


Time to first disease progression event in FC II patients receiving ERA + PDE-5i at baseline


54%
RISK REDUCTION
HR 0.36 (95%
CI: 0.14, 0.91)

FC III SUBGROUP

Time to first disease progression event in FC III patients receiving ERA + PDE-5i at baseline


POST HOC ANALYSIS: 41% RISK REDUCTION OF DISEASE PROGRESSION IN PAH-CTD PATIENTS TREATED WITH UPTRAVI®

SSC SUBGROUP

PAH-SSc baseline patient characteristics

Of the 334 patients with PAH-CTD in GRIPHON, 51% (n=170) had PAH-SSc.

The risk reduction of selexipag versus placebo was 44% in patients with PAH-SSc and 34%in patients with PAH-SLE

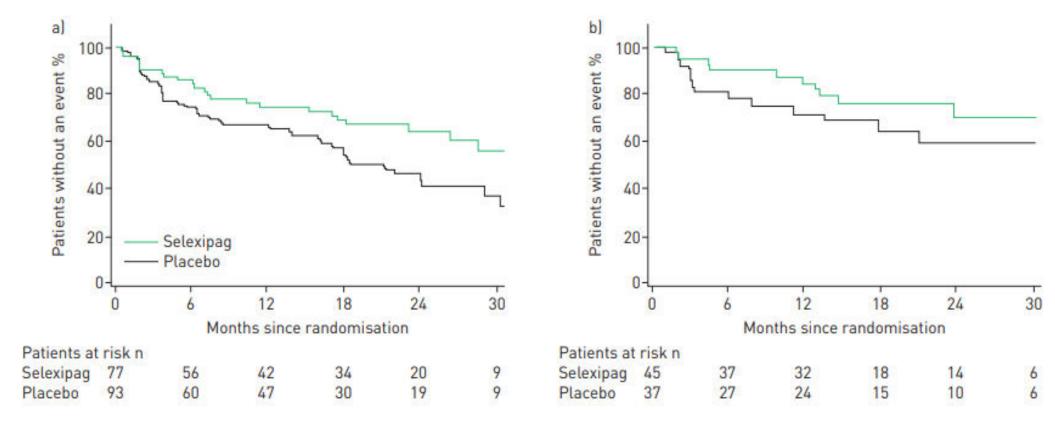


FIGURE 2 Effect of selexipag on the primary composite endpoint of morbidity/mortality in patients with a) pulmonary arterial hypertension associated with systemic sclerosis and b) pulmonary arterial hypertension associated with systemic lupus erythematosus.

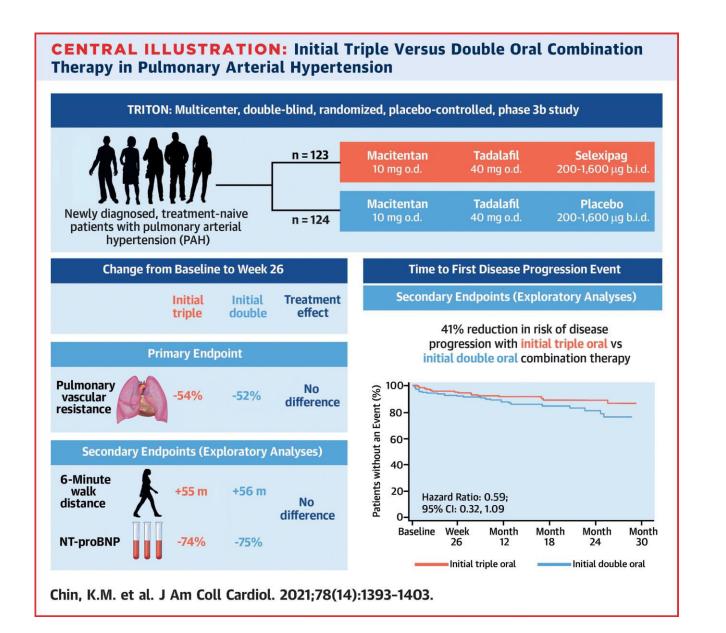
Most frequent adverse events among patients with PAH associated with connective tissue

	Placebo	Selexipag
Subjects n	165#	167
Adverse events n	1301	1499
Patients with at least one adverse event	160 (97.0)	164 [98.2]
Patients with at least one serious adverse event	85 (51.5)	80 (47.9)
Patients with adverse event leading to discontinuation of study drug	15 (9.1)	32 (19.2)
Adverse event [¶]		
Headache	60 (36.4)	104 (62.3)
Diarrhoea	42 (25.5)	67 (40.1)
Nausea	41 (24.8)	62 (37.1)
Worsening of PAH	62 [37.6]	39 (23.4)
Dizziness	30 (18.2)	35 (21.0)
Vomiting	10 (6.1)	34 (20.4)
Upper respiratory tract infection	31 [18.8]	33 [19.8]
Peripheral oedema	31 [18.8]	32 (19.2)
Pain in extremity	8 (4.8)	31 (18.6)
Dyspnoea	37 (22.4)	30 (18.0)
Pain in jaw	11 (6.7)	24 (14.4)
Myalgia	10 (6.1)	21 (12.6)
Arthralgia	12 (7.3)	19 (11.4)
Nasopharyngitis	12 (7.3)	19 (11.4)
Flushing	8 (4.8)	19 (11.4)
Cough	23 [13.9]	17 (10.2)
Chest pain	15 (9.1)	17 (10.2)
Decreased appetite	9 (5.5)	17 (10.2)
Anaemia	17 (10.3)	16 (9.6)

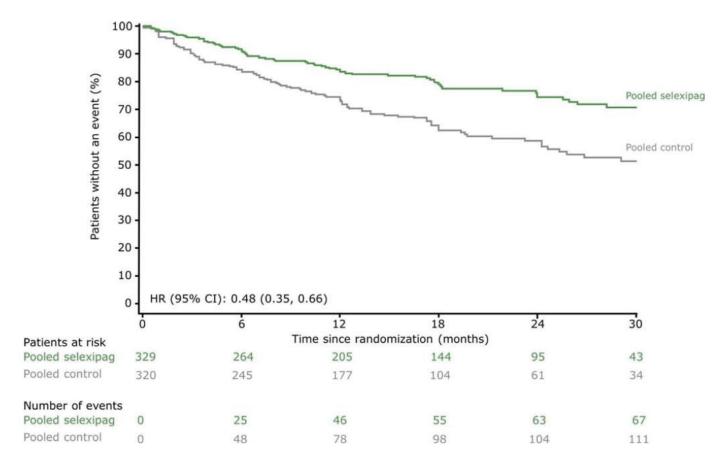
Data are presented as n (%), unless otherwise stated. ": among the patients randomly assigned to the placebo group, two did not receive study treatment and were not included in the safety analysis set; 1: adverse events are listed for those that occurred in more than 10% of the patients in any study group during the double-blind period and up to 7 days after placebo or selexipag was discontinued.

Selexipag treatment in patients with systemic sclerosis-associated pulmonary arterial hypertension in clinical practice, a case series

Journal of Scleroderma and Related Disorders 2020, Vol. 5(3) NP7–NP11 © The Author(s)



Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/2397198320916082 journals.sagepub.com/home/jso


- Study included 13 systemic sclerosis—associated pulmonary arterial hypertension patients, 10 patients were female, median age (interquartile range) of 68 (58–75) years, median systemic sclerosis disease duration of 7.4 (4.7–13.5) years, and median pulmonary arterial hypertension duration of 4 (2.5–7.5) years
- Adding selexipag to background therapy in a high-risk cohort of systemic sclerosis associated pulmonary arterial hypertension patients provided sustained stabilization of symptoms with an acceptable safety profile

TRITON TRIAL

Treatment effect of selexipag on time to disease progression when initiated early in pulmonary arterial hypertension (PAH) patients: GRIPHON and TRITON pooled analysis

G.J. Coghlan¹, S. Gaine², R.N. Channick³, K.M. Chin⁴, C. Du Roure⁵, J.S.R. Gibbs⁶, M.M. Hoeper⁷, I.M. Lang⁸, S.C. Mathai⁹, V.V. McLaughlin¹⁰,

SUMMARY

- CTD PAH ARE ONE OF THE MAJOR GROUPS OF PAH
- SCLERODERMA FOLLOWED BY LUPUS ACCOUNT FOR MOST OF THE CASES
- SCREENING PROTOCOLS ARE VERY USEFUL FOR EARLY DETECTION
- IMMUNOSUPRESSIVE THERAPY IS DEFINITELY USEFUL IN SLE AND PROBABLY USEFUL IN SCLERODERMA
- WE SHOULD TREAT TO TARGET(FC-1)

• COMBINATION THERAPIES (TRIPLE WITH SELEXIPAG) IS PROBABLY THE FUTURE

THANK YOU

- PAH definition
- PAH classification
- PAH screening
- PAH pathophysiology
- PAH management
- PAH follow up

Medication	Monotherapy	Sequential Dual Combination	Sequential Triple Combination
Selexipag			
Riociguat			*
Inhaled Treprostinil	余余		
Oral Treprostinil			

Green: Positive event-driven trial. Yellow: Positive 6-minute walk-driven trial. Orange: Clinical experience, nonrandomized data, or trends in randomized data suggest possible benefit.

*Cannot utilize with phosphodiesterase type 5 inhibitor; experience with prostanoids is thus far limited. **Rarely used as monotherapy.

	Efficacy	Tolerability	Convenience	Safety
+ Intravenous Epoprostenol	+++++	+++	++	+++
+ Intravenous Treprostinil	+++++	+++	++	+++
+ Subcutaneous Treprostinil	+++++	+++	++	++++
+ Selexipag	++++	++++	++++	+++++
+ Inhaled Treprostinil	+++	++++	+++	+++++
ERA + Riociguat*	+++	+++++	+++++	+++++
Oral Treprostinil**	++	+++	++++	+++++

^{*}Cannot combine riociguat with PDE5 inhibitor. **Oral treprostinil has not met endpoints in randomized combination use.

Mycophenolate Mofetil (MMF) Use in Scleroderma Patients with Pulmonary Hypertension: Observations from the Pulmonary Hypertension Assessment and Recognition of Outcomes in Scleroderma Cohort

Lesley Ann Saketkoo¹, Matthew R. Lammi², Aryeh Fischer³, Jerry A. Molitor⁴ and Virginia D. Steen⁵, ¹Scleroderma and Sarcoidosis Patient Care and Research Center, Rheumatology and Pulmonary Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, ²Louisiana State University Health Sciences Center, Pulmonary and Critical Medicine, New Orleans, LA, ³Rheumatology / ILD Program, National Jewish Health, Denver, CO, ⁴Rheumatology, University of Minnesota, Minneapolis, MN, ⁵Department of Rheumatology, Georgetown University Medical Center, Washington, DC

Meeting: 2014 ACR/ARHP Annual Meeting

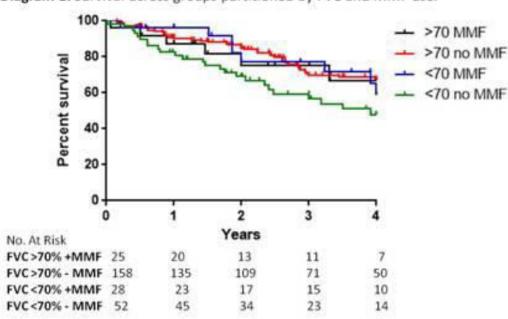


Diagram 1. Survival across groups partitioned by FVC and MMF use.

The trend for improved survival in patients with PH with FVC < 70 who were treated with MMF even in the absence of improvement of FVC is intriguing. Whether it has an effect on pulmonary artery remodeling should be considered. These findings warrant prospective controlled investigations of MMF in SSc PH particularly in those with restrictive lung disease.

Does Mycophenolate Mofetil (mmf) Have An Effect On Pulmonary Hemodynamics? Observations From The Pulmonary Hypertension Assessment And Recognition Of Outcomes In Scleroderma (pharos) Cohort

L. Saketkoo¹, ², M. R. Lammi¹, J. Gordon³, P. Lauto¹, V. Steen⁴, PHAROS Investigators

Table 1. Comparison between SSc patients on No IS medications and MMF at time of first RHC. Continuous variables are reported as median, interquartile range; categorical values are proportional.

	No IS	MMF	p Value
n	203	39	
Age	60 (52,68)	54 (47,63)	*0.0143
Sex (% female)	84%	65%	0.6491
N (%) Limited SSc	144 (71%)	14 (35%)	*< 0.0001
Time from 1 st SSc Symptom (years)	11.2 (5.3,21.0)	6.9 (3.0,10.3)	*0.0004
mPAP	33 (28,44)	29 (25,35)	*0.0016
PVR	355 (242,692)	222 (162,344)	*0.0006
PCWP	11 (8,14)	11 (9,15)	0.7036
FVC TLC	78.1 (64,88) 76.5 (66,93)	68.9 (48,84) 62.8 (47,80)	*0.0298 *0.0002
FEV/FVC	81 (75,87)	87 (81,93)	*0.0048
DLCO	37.5 (30,50)	34.3 (28,39)	0.0929
FVC:DLCO	1.94 (1.6, 2.4)	1.85 (1.4,2.5)	0.6908
6MWD	338.3 (238,428)	396.2 (343,475)	*0.0298

¹Louisiana State University Health Sciences Center, New Orleans, LA, ², ³Hospital for Special Surgery, New York, NY, ⁴Georgetown University Medical Center, Washington, DC

S.12.4 A COMPARISON OF THE PREDICTIVE ACCURACY OF THREE SCREENING MODELS (DETECT V. ESC/ERS V. ASIG) FOR PULMONARY ARTERIAL HYPERTENSION IN SYSTEMIC SCLEROSIS

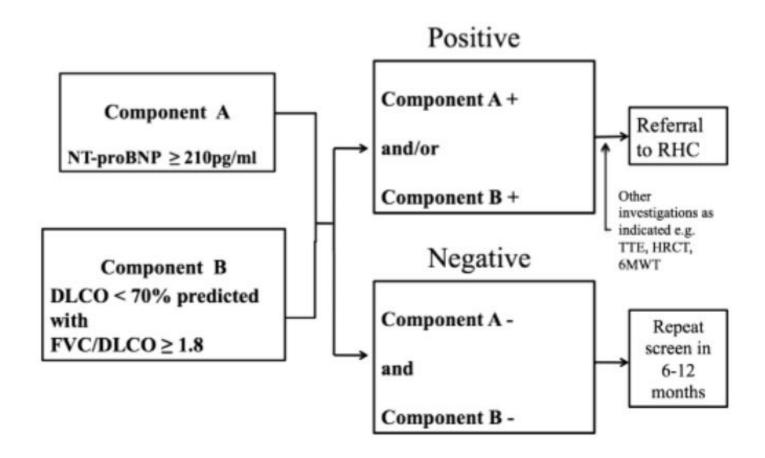

Y.J. Hao ^{1,2}, V. Thakkar ^{1,2}, W. Stevens ¹, D. Prior ², C. Rabusa ^{1,2}, P. Youssef ³, E. Gabbay ⁴, J. Roddy ⁴, J.G. Walker ⁵, J. Zochling ⁶, J. Sahhar ⁷, P. Nash ⁸, S. Lester ⁹, C. Hill ⁹, M. Rischmueller ⁹, S.M. Proudman ¹⁰, M. Nikpour ^{1,2}

Table 1. Comparison of the performance of DETECT v. ESC/ERS v. ASIG screening models for SSc-PAH

				PAH prevalence set at 10%		
	DETECT	ESC/ERS	ASIG	DETECT	ESC/ERS	ASIG
	n=61	n=58	n=61	n=61	n=58	n=61
Sensitivity	100%	96.3%	100%	100%	96.3%	100%
(95% CI)	(87.2-100)	(81-99.9)	(87.2-100)	(54.1-100)	(54.1-100)	(54.1-100)
Specificity	35.3%	29.0%	47.1%	35.3%	29.0%	47.1%
(95% CI)	(19.7-53.5)	(19.7-53.5)	(29.8-64.9)	(23.8-50.4)	(12.5-36.8)	(35.4-62.9)
PPV	55.1%	54.2%	60%	14.7%	13.1%	17.4%
(95% CI)	(40.2-69.3)	(39.2-68.6)	(44.3-74.3)	(5.6-29.2)	(4.9-26.3)	(6.8-34.5)
NPV	100%	90.0%	100%	100%	99.7%	100%
(95% CI)	(63.1-100)	(55.5-99.7)	(79.4-100)	(83.2-100)	(73.5-100)	(87.2-100)

Department of Rheumatology, St Vincent's Hospital Melbourne, Melbourne, AUSTRALIA,² The University of Melbourne Department of Medicine at St Vincent's Hospital Melbourne, Melbourne, AUSTRALIA,³ Institute of Rheumatology and Orthopaedics, Royal Prince Alfred Hospital, Sydney, AUSTRALIA,⁴ Pulmonary Hypertension Service and Department of Rheumatology, Royal Perth Hospital, Perth, AUSTRALIA,⁵ Department of Rheumatology, Flinders Medical Centre, Adelaide, AUSTRALIA,⁶ The Menzies Research Institute Tasmania, Tasmania, AUSTRALIA,⁷ Department of Rheumatology, Monash Medical Centre, Melbourne, AUSTRALIA,⁸ Sunshine Coast Rheumatology, Sunshine Coast, AUSTRALIA,⁹ Rheumatology Department, The Queen Elizabeth Hospital, Adelaide, AUSTRALIA,¹⁰ Department of Rheumatology, Royal Adelaide Hospital, Adelaide, AUSTRALIA

ASIG



ECS

Positive screen on echocardiography (referral to RHC recommended)

- TRV > 3.4 m/s
- or TRV >2.8-≤3.4 m/s and symptoms (current dyspnoea, current syncope/near syncope, presence of peripheral oedema)
- or TRV ≤2.8 m/s and symptoms and additional suggestive echo variable (e.g. RA area >18 cm²)

DETECT

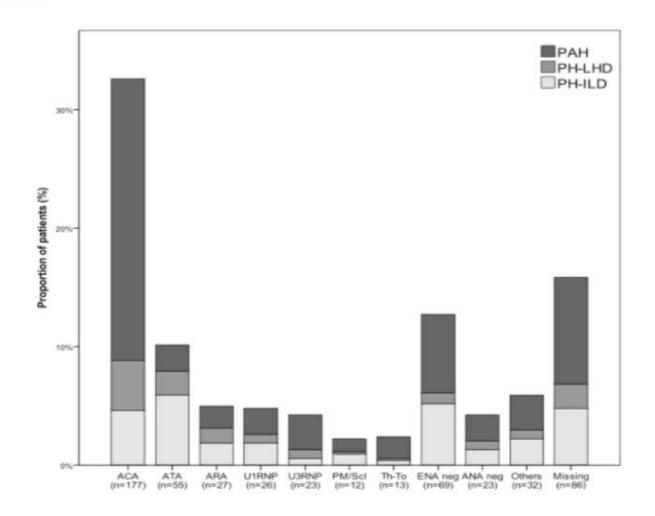
S.12.5 CLINICAL SUBTYPE AND AUTOANTIBODIES BOTH HELP PREDICT PULMONARY ARTERIAL HYPERTENSION, BUT AUTOANTIBODIES ARE STRONGER PREDICTORS OF DEVELOPING SECONDARY PULMONARY HYPERTENSION

M. Mohile, M. Lucas, T. Medsger, R. Domsic

University of Pittsburgh, Pittsburgh, USA

Table 1: Multivariable Predictors of PAH

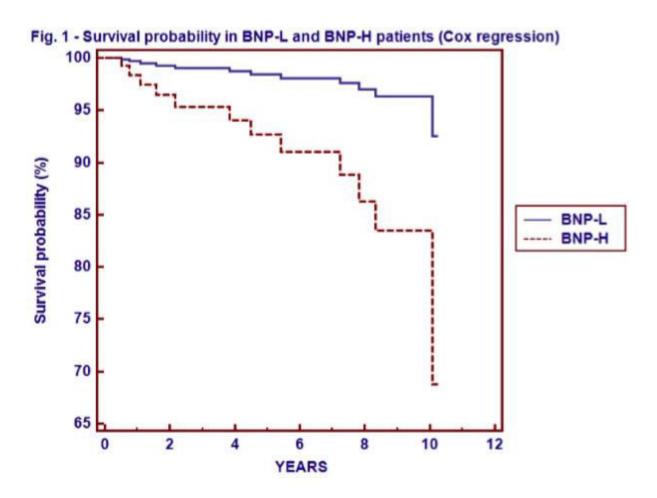
	Odds Ratio (95% Confidence Interval)	p-value
Age (years) at initial visit < 35 35-44 45-54 55-64 >65	0.88 (0.37 - 2.10) 1.07 (0.48 - 2.42) 2.11 (0.94 - 4.73) 3.64 (1.64 - 8.07)	< 0.0001
Limited cutaneous involvement	2.74 (1.67 - 4.48)	< 0.0001
Th/To or U3RNP positive (nucleolar ANA)	2.66 (1.61 - 4.41)	< 0.0001


Table 2: Multivariable Predictors of Secondary PH

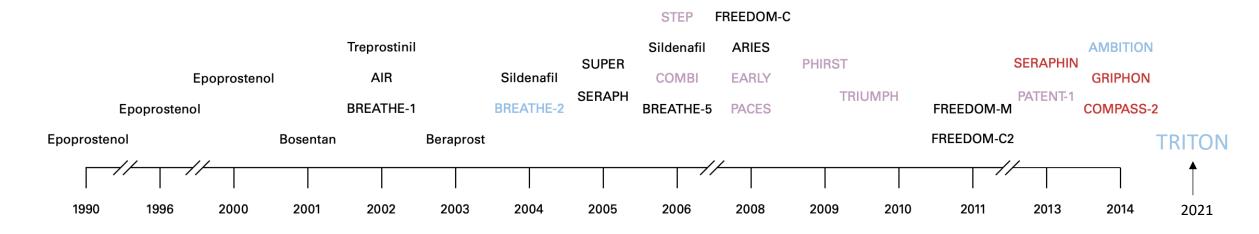
	Odds Ratio (95% Confidence Interval)	p-value
Age (years) at initial visit < 35 35-44 45-54 55-64 >65	1.23 (0.43 – 3.59) 1.95 (0.72 – 5.29) 2.70 (0.98 – 7.43) 3.53 (1.25 – 9.97)	0.03
Male	2.18 (1.32 - 3.59)	< 0.002
Anti-U11/U12 RNP positive	1.51 (0.93 - 2.45)	0.02
ACA	0.27 (0.11 - 0.67)	0.004
Limited cutaneous involvement	3.12 (1.17 - 8.34)	0.09

PS21 AUTOANTIBODY PROFILE IN SYSTEMIC SCLEROSIS ASSOCIATED PULMONARY HYPERTENSION

V. Sobanski 1, S. Nihtyanova 1, B. Lynch 1, B. Schreiber 2, J. Harvey 3, C. Handler 2, C. Denton 1, G. Coghlan 2


¹ Centre For Rheumatology and Connective Tissue Diseases - Royal Free Hospital - University College London, London, UNITED KINGDOM, National Pulmonary Hypertension Unit - Royal Free Hospital - University College London, London, UNITED KINGDOM, Department of Clinical Immunology - Royal Free Hospital - University College London, London, UNITED KINGDOM

S.12.6 PROGNOSTIC VALUE OF NT-PROBNP IN SYSTEMIC SCLEROSIS PATIENTS WITHOUT PULMONARY HYPERTENSION


M. Antivalle, M. Battellino, M.C. Ditto, M. Chevallard, A. Mutti, A. Batticciotto, V. Varisco, F. Rigamonti, F. Atzeni, P. Sarzi-Puttini

Rheumatology - L.Sacco University Hospital, Milano, ITALY

TREATMENT

TIMELINE OF PAH THERAPIES

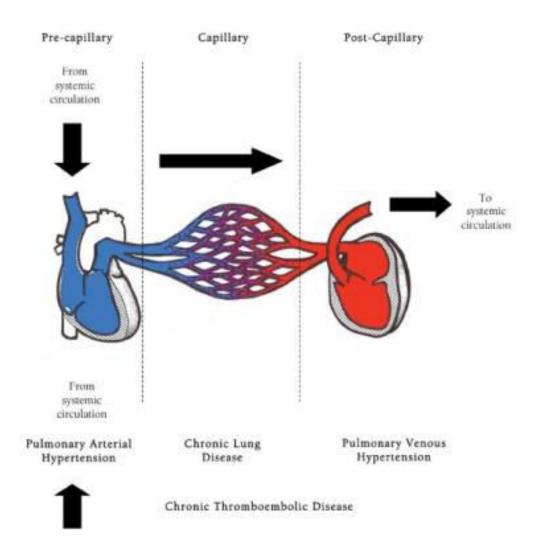
Monotherapy

Monotherapy and/or sequential combination

Morbidity/Mortality

Upfront combination

PS23 COST SAVINGS WITH A BIOMARKER-BASED SCREENING ALGORITHM FOR PULMONARY ARTERIAL HYPERTENSION IN SYSTEMIC SCLEROSIS


A. Quinlivan ^{1,2}, V. Thakkar ^{1,2}, W. Stevens ¹, D. Prior ², C. Rabusa ¹, P. Youssef ³, E. Gabbay ⁴, J. Roddy ⁴, J. Walker ⁵, J. Zochling ⁶, J. Sahhar ⁷, P. Nash ⁸, S. Lester ⁹, C. Hill ⁹, M. Rischmueller ⁹, S. Proudman ¹⁰, M. Nikpour ^{1,2}

¹ St. Vincent's Hospital, Melbourne, AUSTRALIA, ² The University of Melbourne, Melbourne, AUSTRALIA, ³ Royal Prince Alfred Hospital, Sydney, AUSTRALIA, ⁴ Royal Perth Hospital, Perth, AUSTRALIA, ⁵ Flinders Medical Centre, Adelaide, AUSTRALIA, ⁶ Menzies Reseach Institute Tasmania, Hobart, AUSTRALIA, ⁷ Monash Medical Centre, Melbourne, AUSTRALIA, ⁸ Sunshine Coast Rheumatology, Sunshine Coast, AUSTRALIA, ⁹ The Queen Elizabeth Hospital, Adelaide, AUSTRALIA, ¹⁰ Royal Adelaide Hospital, Adelaide, AUSTRALIA

	ASIGOLD	ASIGNEW
Total number of patients	643	643
Number (%) screen+	256 (40%)	231 (36%)
% screen+ with PAH on RHC	45%	50%
TTE required	643	231
RHC required	256	231
NNS to get one screen+	2.50	2.78
Number of RHC to diagnose one case PAH	2.20	2.00
NNS to diagnose one case of PAH	5.50	5.56
Total cost of screening and diagnosis	\$851,917	\$727,833
Cost of diagnosis of one case of PAH	\$7,311.70	\$6,300.20

Table 1. ASIG_{OLD} and ASIG_{NEW} algorithms applied to 643 consecutive patients with SSc. NNS=number needed to screen. All costs are in Australian Dollars.

Pulmonary vasculature

nomenclatures

- PH pulmonary hypertension
- PAH- Pulm. Arterial hypertension
- mPAP- Mean Pulm. Arterial pressure
- PCWP- Pulm. Capillary wedge pressure.
- VTR Velocity of Tricusp. Regur.
- PFT- Pulm. Function test
- 6MWD- 6 min walk distance
- BNP- B-type natriuretic peptide

Definition & Classification of PH

PH DEFINITION

Table 3 Haemodynamic definitions of pulmonary hypertension^a

Definition	Characteristics	Clinical group(s) ^b
Pulmonary hypertension (PH)	Mean PAP ≥25 mmHg	All
Pre-capillary PH	Mean PAP ≥25 mmHg PWP ≤15 mmHg CO normal or reduced ^c	 Pulmonary arterial hypertension PH due to lung diseases Chronic thromboembolic PH PH with unclear and/or multifactorial mechanisms
Post-capillary PH Passive Reactive (out of proportion)	Mean PAP ≥25 mmHg PWP >15 mmHg CO normal or reduced ^c TPG ≤12 mmHg TPG >12 mmHg	2. PH due to left heart disease

mPAP >30mmhg after exercise NOT VALID

 $CO = cardiac\ output;\ PAP = pulmonary\ arterial\ pressure;\ PH = pulmonary\ hypertension;\ PWP = pulmonary\ wedge\ pressure;\ TPG = transpulmonary\ pressure\ gradient\ (mean\ PAP - mean\ PWP).$

^aAll values measured at rest.

^bAccording to *Table 4*.

^cHigh CO can be present in cases of hyperkinetic conditions such as systemic-to-pulmonary shunts (only in the pulmonary circulation), anaemia, hyperthyroidism, etc.

ECHO definitions for PH

• PH <u>unlikely</u>- vTR < 2.8m/s,PA syst pressure<36mHg

• PH possible- vTR 2.9- 3.4m/s,PA syst pressure 37- 50mmHg

• PH <u>likely</u> – vTR - >3.4m/s, PA syst pressure >50mmHg

ECHO CAN NEVER DIAGNOSE PAH

Venice 2003 classification of PH

1. Pulmonary arterial hypertension

- Idiopathic PAH
- Heritable

BMPR2

ALK1, endoglin

unknown

- Drugs and toxins induced
- Associated with:
- **←Connective tissue diseases**
- HIV infection
- Portal hypertension
- systemic to pulmonary shunts
- Schistosomiasis
- Chronic haemolytic anaemia

1'Pulm. veno- occlusive disease (PVO) and/or pulmonary capillary haemangiomatosis (PCH)

2. Pulmonary hypertension due to left heart disease

- Systolic dysfunction
- Diastolic dysfunction
- Valvular disease

3. Pulmonary hypertension due to lung diseases and/or hypoxia

- Chronic obstructive pulmonary disease
- Interstitial lung disease
- Sleep-disordered breathing
- Chronic exposure to high altitude
- Broncho pulmonary dysplasia (BPD)
- Developmental abnormalities

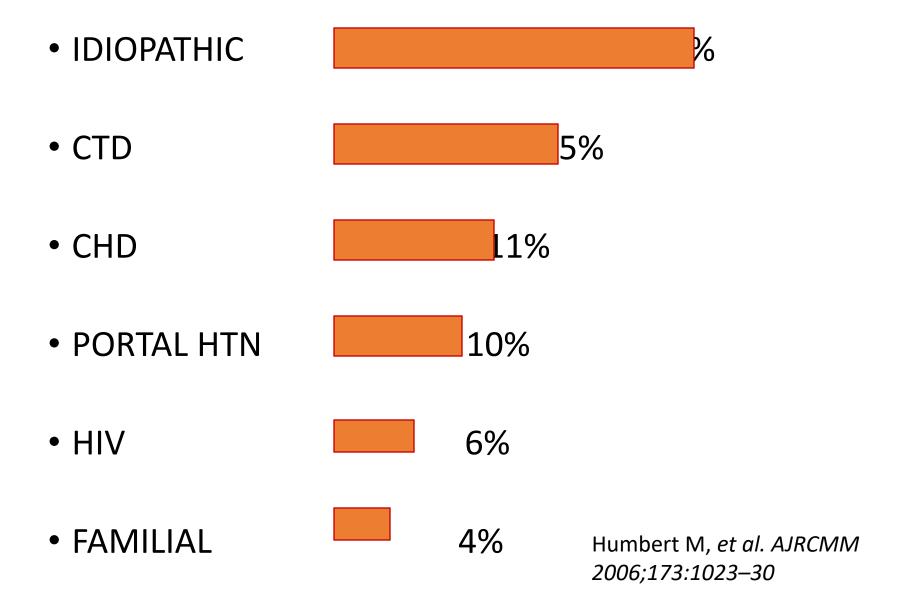
4. Chronic thromboembolic pulmonary hypertension (CTEPH)

5. Pulmonary Hypertension with unclear and/or mulifactorial mechanisms

Haematologic disorders
 myeloproliferative disorders; splenectomy

Systemic disorders

Vasculitis sarcoidosis, pulmonary Langerhans cell histiocytosis LAM, neurofibromatosis.


Metabolic disorders

Glycogen storage disease, Gaucher disease, thyroid disorders

- Congenital heart disease other than systemic to pulmonary shunt
- Others: obstruction by tumours, fibrosingmediastinitis, chronic renal failure on dialvsis

PH in CTD & Systemic Sclerosis

CTD LEADING CAUSE OF PAH

Connective Tissue Disease-associated Pulmonary Arterial Hypertension in the Modern Treatment Era

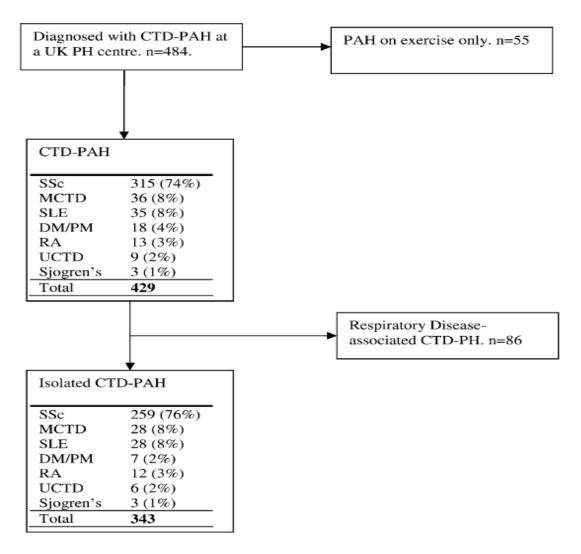
Robin Condliffe^{1,2}, David G. Kiely¹, Andrew J. Peacock³, Paul A. Corris^{4,5}, J. Simon R. Gibbs⁶, Florenc Vrapi⁷, Clare Das⁷, Charlie A. Elliot¹, Martin Johnson³, Julia DeSoyza⁴, Chantal Torpy⁶, Kim Goldsmith², Denise Hodgkins², Rodney J. Hughes², Joanna Pepke-Zaba², and J. Gerry Coghlan⁷

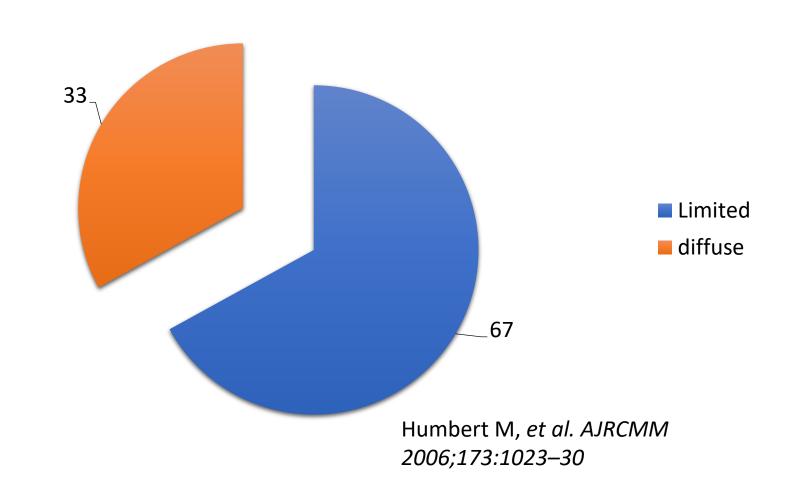
¹Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield; ²Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge;

³Scottish Pulmonary Vascular Disease Unit, Western Infirmary, Glasgow; ⁴Northern Vascular Unit, Freeman Hospital, Newcastle-upon-Tyne;

⁵Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne; ⁶Department of Cardiology, Hammersmith Hospital, London; and

⁷Department of Cardiology, Royal Free Hospital, London, United Kingdom




Figure 1. Study cohort. CTD-PH/PAH = connective tissue disease—associated pulmonary hypertension/pulmonary arterial hypertension; DM/PM = dermatomyositis/polymyositis; MCTD = mixed connective tissue disease; RA = rheumatoid arthritis; SLE = systemic lupus erythematosus; SSc = systemic sclerosis; UCTD = undifferentiated connective tissue disease; UK-PH = U.K. pulmonary hypertension center.

• SSc is the leading cause of death from PAH amongst the CTD.

• SLE-8%

• SSc- 74%

PAH in SSC

PAH in SSc worse than SLE

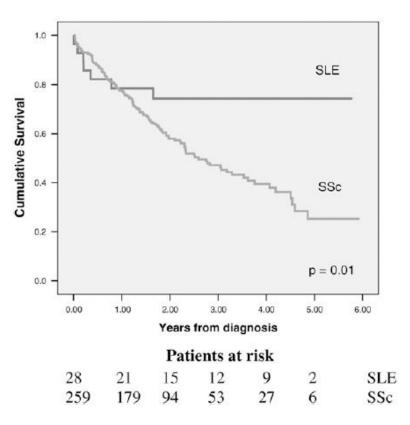
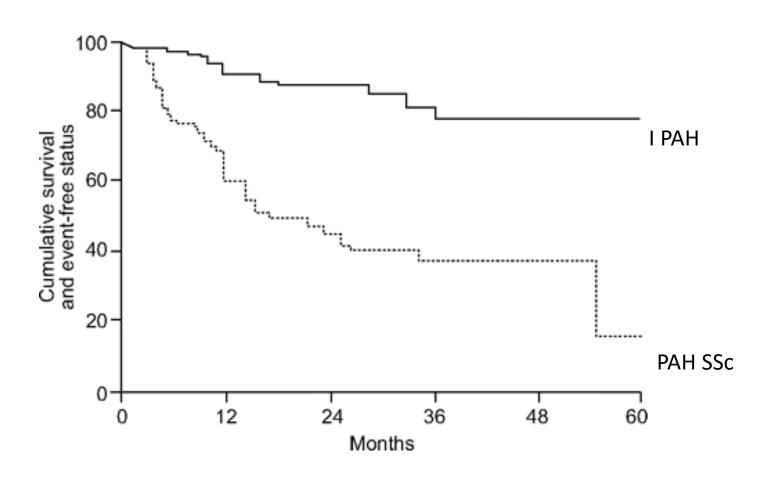



Figure 5. Survival from diagnosis of patients with isolated systemic sclerosis–associated pulmonary arterial hypertension and systemic lupus erythematosus–pulmonary arterial hypertension.

I PAH vs PAH SSc

Kawut et al. chest 2003

PH in SSC causes

Table 2. Estimated incidence of pulmonary hypertension during the 3-year followup period*

	Estimated incidence (no. of cases per 100 patient-years)	95% CI
All forms of pulmonary	1.37	0.74-2.00
hypertension	0.61	0.26 1.20
Pulmonary arterial hypertension	0.61	0.26 - 1.20
Among patients with lcSSc	0.40	0.11 - 1.03
Among patients with dcSSc	1.25	0.34 - 3.20
Postcapillary pulmonary hypertension	0.61	0.26-1.20
Pulmonary hypertension secondary to pulmonary fibrosis	0.15	0.02-0.55

^{* 95%} CI = 95% confidence interval; lcSSc = limited cutaneous systemic sclerosis; dcSSc = diffuse cutaneous systemic sclerosis.

Venice 2003 classification of PH

1. Pulmonary arterial hypertension

- Idiopathic PAH
- Heritable

BMPR2

ALK1, endoglin

unknown

- Drugs and toxins induced
- Associated with:
- Connective tissue diseases
- HIV infection
- Portal hypertension
- systemic to pulmonary shunts
- Schistosomiasis
- Chronic haemolytic anaemia

1'Pulm. veno- occlusive disease (PVO) and/or pulmonary capillary haemangiomatosis (PCH)

- 2. Pulmonary hypertension due to left heart disease
- Systolic dysfunction
- Diastolic dysfunction
- Valvular disease

- 3. Pulmonary hypertension due to lung diseases and/or hypoxia
- Chronic obstructive pulmonary disease
- Interstitial lung disease
- Sleep-disordered breathing
- Chronic exposure to high altitude
- Broncho pulmonary dysplasia (BPD)
- Developmental abnormalities
- 4. Chronic thromboembolic pulmonary hypertension (CTEPH)
- 5. Pulmonary Hypertension with unclear and/or mulifactorial mechanisms
- Haematologic disorders
 myeloproliferative disorders; splenectomy
- Systemic disorders

Vasculitis sarcoidosis, pulmonary Langerhans cell histiocytosis LAM, neurofibromatosis.

Metabolic disorders

Glycogen storage disease, Gaucher disease, thyroid disorders

- Congenital heart disease other than systemic to pulmonary shunt
- Others: obstruction by tumours, fibrosingmediastinitis, chronic renal failure on dialysis

PH in Scleroderma can be multifactorial and difficult to asses.

• PVOD- characterised by intimal proliferation and fibrosis of the intrapulm veins and venules.

Dorfmuller p et al Hum pathol 2007

- PVOD is an under recognised cause of PH in SSc patients.

 Montani D et al Eur Respir J 2009;33:189-200
- SSc-PAH may be charcterised by more frequent coexistent PVOD.

 Dorfmuller p et al Hum pathol 2007

PH in SSc due to left heart failure

ARTHRITIS & RHEUMATISM

Vol. 58, No. 6, June 2008, pp 1803–1809

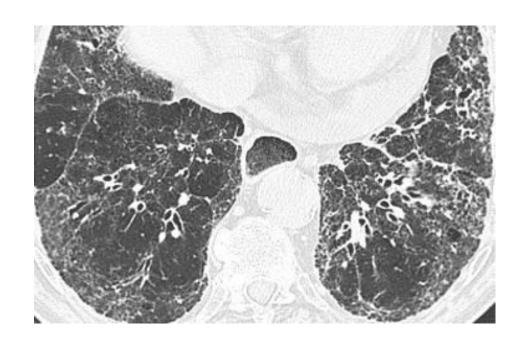
DOI 10.1002/art.23463

© 2008, American College of Rheumatology

Cardiac Involvement in Systemic Sclerosis Assessed by Tissue-Doppler Echocardiography During Routine Care

A Controlled Study of 100 Consecutive Patients

Christophe Meune, Jérôme Avouac, Karim Wahbi, Laure Cabanes, Julien Wipff, Luc Mouthon, Loïc Guillevin, André Kahan, and Yannick Allanore


Table 2. Echocardiographic findings in the 100 SSc patients and 26 age- and sex-matched controls*

	SSc patients (n = 100)	Controls (n = 26)	P†
Left ventricular end-diastolic diameter, mm	46.1 ± 0.5	47.1 ± 1.4	0.394
Interventricular septum thickness, mm	9.2 ± 0.2	9.7 ± 0.3	0.198
Posterior wall thickness, mm	8.5 ± 0.2	8.8 ± 0.2	0.330
Left ventricular ejection fraction, %	64.9 ± 0.6	67.2 ± 0.7	0.069
No. with left ventricular ejection fraction <55%	7	0	0.343
Left atrial diameter, mm	34.0 ± 0.5	31.1 ± 1.1	0.020
Transmitral Doppler E/A ratio	1.0 ± 0.3	1.2 ± 0.6	0.038
No. with pericardial effusion	15	1	0.189
Pulmonary arterial pressure, mm Hg	33.3 ± 0.6	30.8 ± 1.0	0.053
No. with pulmonary arterial pressure >40 mm Hg Mitral valve findings, no. of patients	11	0	0.118
Regurgitation	48	8	NS
Grade I	45	7	_
Grade II	3	1	_
Stenosis	2	0	NS
Prolapse	2	0	NS
Aortic valve findings, no. of patients			
Insufficiency	18	0	0.023
Grade I	15	0	_
Grade II	3	0	_
Stenosis	3	0	NS
S _M , cm/second	11.0 ± 0.3	12.2 ± 0.5	0.090
No. with $S_M < 7.5$ cm/second	14	0	0.040
No. with $E_A < 10$ cm/second	30	2	0.022
E/E _A ratio	5.9 ± 0.2	5.2 ± 0.3	0.177
No. with $S_T < 11.5$ cm/second	15	0	0.039

^{*} Except where indicated otherwise, values are the mean \pm SD. SSc = systemic sclerosis; S_M = systolic mitral annular velocity; E_A = lateral annulus early diastolic velocity; S_T = systolic tricuspid annular velocity.

[†] By Student's *t*-test for continuous variables or by chi-square or Fisher's exact test for categorical variables, as appropriate. NS = not significant.

PH due to pulmonary fibrosis

PH-ILD worse than isolated PH

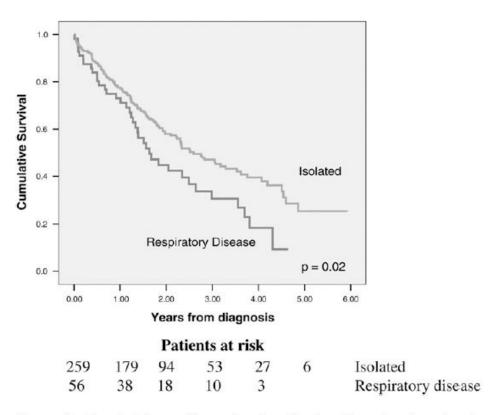
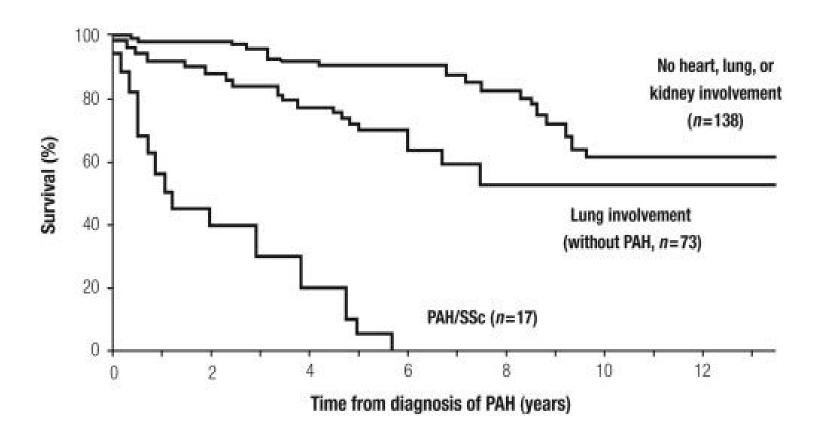
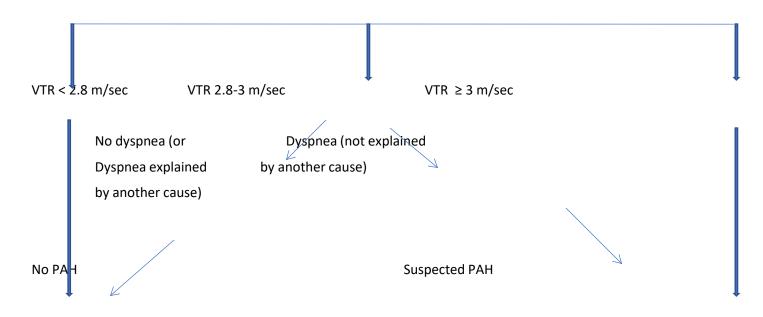



Figure 2. Survival from diagnosis of patients with systemic sclerosis and isolated or respiratory disease—associated pulmonary hypertension.

Why screening

Methods of screening

Itine'rAIR-Scle'rodermie study


• 559 pts without severe Pulmonary function abnormalities

underwent Doppler echocardiography.

 Patients with a peak velocity of tricuspid regurgitation (VTR) of >3 m/s or 2.8–3 m/s accompanied by unexplained dyspnoea then underwent right heart catheterization (RHC) to confirm PAH according to international guidelines

Doppler echocardiography

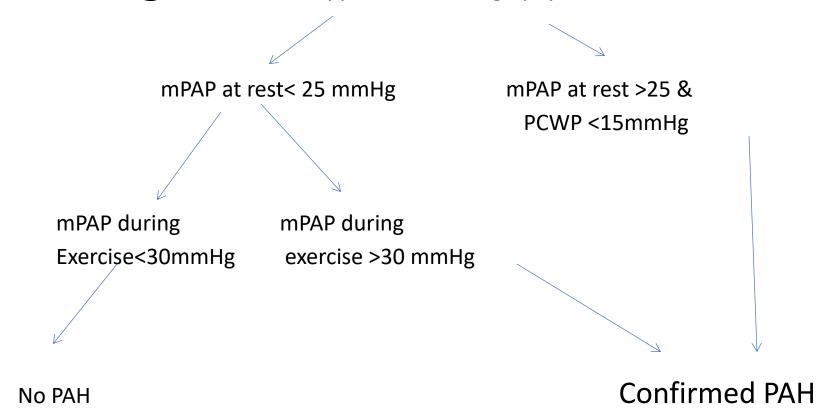
SSc patients with no severe pulmonary function abnormalities

VTR: Peak velocity of pulmonary regurgitation

Based on Doppler echocardiography-33 of the 559 patients had suspected PAH.

RHC

PAH: 18


- 14 had a mPAP ≥ 25 mmHg at rest
- ≥ 25-35 mmHg : 9
- ≥ 35-45 mmHg : 4
- ≥ 45 mmHg : 1
- 4 had a mPAP < 25 mmHg at rest but ≥ 30 mmHg at exercise

No PAH: 12/33

- 5 had no exercise RHC
- 6 had a mPAP > 20 mmHg

Post capillary PH: 3/33

. Right heart catheterization

Key take home points

- Echo cardiography is a good screening tool.
- Echo cardiography tends to overestimate PAH as compared to RHC.
- PAH can never be diagnosed on ECHO.

Other methods of screening

PHAROS STUDY

- 2 YR OUTCOME FOR PRE-PAH IN SSc
- ENTRY CRITERIA- DLCO <55%
- ECHO PASP- >40MMHG
- 205 PATIENTS ENROLLED SCREENED ANNUALY
- AFRICAN AMERICAN, AND NUCLEOLAR U3 RNP AB, DLCO
- CONCLUSION- AT 2YRS 22% CUMULATIVE DEV OF PAH IN PATIENTS AT HIGH RISK
- VERY LOW DLCO(40%) WAS THE BEST PREDICTOR
- ECHO PASP VARIABLE OVER TIME DID NOT CORRELATE WITH SPAP ON RHC.

OTHER risk factors for PAH in SSC

• Nt pro-BNP

• Telengectasias >10

Nail fold Capillaroscopy

NORMAL

ACTIVE SSc

EARLY SSc

LATE SSc

Not associated with risk of developing PAH

Digital ulcers

Digital gangrene

• Renal crisis